EXPLICIT SOLUTIONS OF CERTAIN MULTIDIMENSIONAL INVERSE PROBLEMS FOR
SYSTEMS OF PARABOLIC-TYPE EQUATIONS

A. D. Iskenderov, T. B. Gardashov, and T. M. Ibragimov UDC 536.24

Explicit solutions have been found for inverse problems of determiming the sys-
tem coefficients of parabolic equations, where the unknown coefficients are
functions of time and space variables. The results of numerical calculations
are given.

As we study inverse problems related to the determination of the thermophysical charac-
teristics which are system coefficients of parabolic equations, of marked significance is
the ascertaining of such special regimes in which these problems allow of explicit solutions
{1, 2]. Similar problems are encountered in determining physical characteristics for pro-
cesses of heat exchange in porous, nonuniform, and other media of complex structure [3, 4].
Here we analyze several such regimes and write out the explicit solutions of the inverse
problems.

I. Let us examine the process described by the system
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where Ci > 0, X > 0, by, Bka Qk» akis Pko i, k, 3 =1, N are continuous functions, { is a
fixed point on the boundary D, x I';, the operator & [Ap(x, t), Tkl has one of the following
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We are interested in the solution of the  inverse problem of determining coefficients
(1). For this purpose we will connect to system (1)-(3) one or more of the following; condi-
tions:
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where Yy(x, t), gr(x, t), qx(x, t), ox(x, t), k = 1, N, q,(x, t) are given continuous func-
tions satisfying the required conditions of conformity.

Problem (1)-(3) with given coefficients and right-hand sides is the boundary-value prob-
lem for the system of parabolic equations (1). Let us assume that this problem has a single
classical solution [5]. We will take w(y) to denote the normalized eigenfunction of the
operator Ay, corresponding to the eigenvalue p > 0, i.e.,

— 8w (@) = pw (), w@lr, =0, yEDs. (8)

Let us examine the heat regime in which the following assumptions (hereafter referred
to as assumption A) are realized: Q,(x, , ) = Qo (¥, @ (4), @a(x, )= P ()@ (®), [ (& 4. D= fa (& 0.
w(y), where Qu(x, 8), ®or(x), for (&, ©) are given functions. Equations (l) are multiplied by
w{y), and then we integrate the derived expressions over the region D,. If we denote

Tw(x 0= [Tuix v Hwdy, k=N, (9)
D,

then we will obtain
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where é{o[kk(x, T), Tokl] is one of the following expressions: 1) A, (X, &) [ATor — BT orl; 2) Ay (x, £+
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After replacement of (9), conditions (2)-(7) assume the form
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Thus, under assumption A system (1)-(7) is equivalently transformed to system (10)-(16).
Therefore, in the following we will basically consider system (10)-(16).

Let Cy(x, t) > 0, by(x, t), bk(x, t), akj (x, t), k, j = 1, N be continuous functions
given on Q. and from conditions (1)-(4) we have to determine the continuous and positive
functions Ap(x, t), k = I, N. If we take (13) into consideration in (10), we will obtain

—oll (% ), Yal = Qu(x, B), (x, H€Q, k=1, N, : (17)

where

N -
Wy (x, 1) = b (%, Hyan— 2 i (%, O, — Cr(, ) d(;‘;k + Qor (x, D) w ().
j=1

In the case of forms 1)-3) of the operator & [Ar(x, t), Tok], the function Ap(x, t) from
(17) is determined elementarily. However, if the operator £ o[Ak(x, t), Tyox] has the form

233



of 4) and 5), then for the determination of Ap(x, t) we derive a system of first-order dif-
ferential equations from which Ag(x, t) can be found with additional assumptions. For ex-
ample, in the case of form 4) of the operator ¥, with n = 1, D1 = [0, 1], let us assume
that the functions 3yy(x, t)/8x vanish only at the point x, [0, 1]. Then from (17) we ob-
tain

M}“’, k=T W.
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(18)

Let us now solve system (17) under conditions (18). We know that this solution has the form
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The right-hand sides of expressions (18) and (19) are assumed to be positive, continuous,
and finite.

If the coefficients Ak(x, t), k = l N are given and we are seeking the coefficients
Crlx, t) > 0, bp(x, t) or agy(x, t), k = I, N, then they can also be found from conditions
(1)-(4) with the method described above. Here & is ong_g£ the numbers 1, 2, ..., N. For
example, if Ap(x, t) > 0, by(x, t), akj (x, t), k, j 1, N are given functions, then for
Ck(x, t) the following expressions are valld

Ci(x, t)= {Qoh % M) + Lolha (5 0, Val + by (5, 1) Vabi (2 ) —

N —
= st D4as 0} PREDNT, b= T,
=1

The right-hand sides of these expressions are assumed to be positive, continuous, and finite.
If in the above-examined problems, in the place of (4) we adopt condition (5), then in the
above-derived explicit formulas for the unknown coefficients w(n), wk(x, t) should be re-
placed by (8w/8v)(n) and gy(x, t), respectively.

Now let us consider the problem of determining the functions Ag(x, t), k = 1, N from
system (1)-(3), (6). It is assumed that the other coefficients of the equation are given.
After substitution of (9) system (1)-(3), (6) is transformed to system (10)-(12), (15). From
(15) and (10) we have
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Consequently, Tox(x, t) is a solution of the mixed problem for the system of quasilinear
parabolic equations (20) with conditions (11) and (12). Let us assume that qk(x, t) > 0,
gok(x) > 0, £1(g, t) > 0, dw/3v(n) >0). These assumptions can be realized in practlcal
terms, and a portion of these conditions is associated with the "conformity™ of the initial
data. Then the function T, g(x, t) > 0, and from (20), (11), and (12) they can be found exact-
ly or approximately. Substituting the found expressions for the functions T,y(x, t) into
(15), we will obtain
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N w I,
2 (5 )= g (%, ) [Toh(x» 922 (n)J k=T,
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If the additional conditions are specified in the form of (7), then the method described
above for the unknown coefficients yields expressions analogous to (19) and (21).

Let us present one special case of an inverse problem such as we considered above, which
is encountered in studying the processes of cooling a body by a flow of liquid or gas, as
the flow changes speed or temperature. Suppose we have to find a function a(t) continuous
on {0, top] from the system-

b AT+ WaO@—T) =0, (DR i=1 2, (22)

with the initial and boundary conditions
Tihmo = 9:(x), Tilr,=0, i=1,2 x€Dy, | (23)

and the following additional condition:
T =gl 0<t<ta, (24)

where ¢@;(x) and g(t) are given functions.

Let D, be a region such that the Green's function G,(x, t; {, 8) of the first boundary-
value problem for the equation Yt — AY = 0 can be found in explicit form. For example, D,
may be a half space, a sphere, a segment, etc. In system (22)-(24), having carried out the
substitution

vi(x, O)=T;(«x, t)exp{fa(-r)dr}, i=1, 2,

0

after uncomplicated transformations for the unknown coefficient we obtain the expression

f 26 0lm@—a@d |
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Dy ov

If in problem (22)-(24) in the place of conditions Tilfl = 0 we specify the conditions
(8Ti/8v)|p1 = 0, then in the place of (24), setting the condition

To(n, H=90), OIS,

for the unknown coefficient a(t) we will find the expression

i
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where G,(x, t; , 8) is the Green's function of the second boundary-value problem for the
equation Yy — AY = 0.

IT. Let us now examine the process described by the following system:
C)TI: ¢ dTh

Ch(x: [) ""’(;‘l“ - x [}"h (.‘J, t), Tk] - bk (X, t)% X, T bh (JC, [) X (25)

m ) P
X E gzk + ay (x1 t) Th ()C, y’ t) = Qh (t’ !’/1 t)’ (x’ y! t) (: Q’Ok’ k = 1! N’
=1 i .
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Problem (25)-(27) with given coefficients and right-hand sides is the boundary-value problem
for the system of parabolic equations. The functions Ty(x, y, t) are a classical solution
of this problem. When conditions A are met, after substitution of (9), system (25)-(27)
assumes the form

2] . n ()T
Cutrs -0 py s, 1), Tosd =, 1), 52
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Let Cp(x, t) > 0, br(x, t), ay(x, t), k = 1, N be continuous functions given on the
regions Q) and from conditions (25)-(27), (5) we have to determine the continuous and posi-
tive functions Ag(x, t), k = I, N. Considering (14) in (28), we obtain

- ;fu [}"h (x) t)» gh (xs t)] = (Dk (x: t)t k = l, N9 (31)
where
o Igy (x, 1 “ 0gr(x. )
Ouix, 1= O (v 0L —Cutn -850 b ) ¥ Ry g
dv ot - dx;

When the operator &€ ,[Ap(x, t), T,i] has the form of 1)-3), the functions Ax(x, t) are de-
termined in elementary fashion from (31). If the operator éfo[kk, Tox] has the form of 4)
and 5), then for the determination of Ax(x, t) we obtain a system of first-order partial
differential equations from which the functions Ag(x, t) can be found under additional as-
sumptions. Thus, for example, in the case of form 4) of the operator &€ [Ag, Tox] when n =
1, Dy, = [0, 1], without excluding generality, we assume that 3g,(x, t)/dx vanishes only

at the point x,€ [0, 1]. Then from (31) we obtain

. 0gy (%, ) T}
by (xy £) = Dy (x0, O) [U'gx(xo' t)——l-a—;l———] . (32)
Having solved Eq. (31) for the case in which k = 1, we find that
A (x, £) = exp {— 5 P, (2) dz} [ SRk (2) exp{ SP,z (s) ds} dz+M(xn_y, z)J, (33)

*R~1 *h~1 h-1

where

—1
Py (2) = [ézﬁgg'_f)__y,gh(z, t)] [ dgk;? 1) J ,
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—1
Re(2) = Qs (2, t)[ﬂ%—”—] R

From condition (30) we obtain

—1
Mo (%, Blxmry, = by (2, 8) agha(;c, 1) [ 5gk+a1x(x, ] ]

’ (34)

X=Xp

where xi, k = 1, N — 1 are certain numbers. Expressions (34) are used to find Agy,(x, t)
from formula (33), etc., for k = 2, 3, ..., N. It is assumed that the right-hand sides of
expressions (32)-(34) are positive, continuous, and finite.

In addition to the additional condition (5) we can also specify one of the conditions
(4) and (6). 1In all of these cases for Ax(x, t) we obtain explicit expressions. If Ap(x, t)
are given, then in analogy with the method described above, we can solve the problem of de-
termining other unknown coefficients.

In conclusion, let us note several other types of boundary conditions which also make
it possible for us to obtain explicit solutions of inverse problems for Egs. (1) and (25).
With bp(x, t) = bi(x, t) = 0, instead of conditions Tkllixr,=0 and Th’Bﬂ;XFg:O , in (3)

and (27), respectively, we can specify the conditions

o7y, 0 T,

=Y,

av Dyxry v

= 0. (35)

Dyp K1y

Then w(y) is a solution of the problem

—AWWFﬂWw%-£LL=&

Here the additional conditions (4) may be set for n€D,, while conditions (5)-(7) on n €D,
must be given.

In problem (1)-(3), instead of condition T45>01::h(§ ¥, {) we can have one of the fol-
lowing conditions: :

T,
av

ot
ov

=/ b

ryxB,

:fk(rg? Y, t); bj }“h(x’ t)

ryx D,

Analogously, in problem (25)-(27), instead of conditions Tyly, = f1, Twlyy =/~ We can set
one of the following conditions:

aT,
ov

oT
=f1(€0, Y, t)’ aN
Yo v

c)

=fn@n, s )
N ’

oT, oTn

=fn @y o B).
N

a) M(x, B

= f1 o ¥ &) Aw(x, ¥

Vo

In these cases we also obtain explicit expressions for the sought coefficients of Egs. (1)
or (25). The method of solving these problems and the form of the derived expressions for
the sought coefficients differ 1little from the methods examined above. Therefore, we will
not dwell in detail on all of these problems. We will present only one of them. Let it

be required to determine the coefficients Ap(x, t) > 0, k = 1, N from conditions (1),
(2), (4), (35) and b). It is assumed in this case that by(x, t) = by(x, t) = 0, Cp(x, t) >
0, agi(x, t) are given functions. Following the same considerations as in the derivation
of Eq. (17) for cases of forms 4) and 5) of the operator P [\, Toxl, we find that Ap(x, t)
satisfy the system of partial differential equations (17). Let us connect the following
conditions to system (17):
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TABLE 1. Comparison of Exact and Approximate Values for the
Coefficient A,(x, t)

x

A (4, 9) e I 0,11 |>o,92 I 0,33 l 0,44 | 0,56 ’.6.67 | U, 78 | 0,89 ‘ 1,0
1 | Exact L6 |1,7 58 L9 j20 (2,1 |22 (2.3 |24 12,5
I §=0 1,6 |1,661141,74111,831}1,926{2,098{2,142) 2,288 2,495} 2,763

111 | §=0,05 1,6 |1,696}1,815]|1,947|2,08912,230|2,400} 2,586} 2,802 3,000
v 1§6=0,15 1,6 11.76911,97112.20012.45012,714 12,9871 3,25513.468 | 3.486

b B, = ot [ 2

rwm), €Ty, (36)

Bngl

and these are obtained from b) with consideration of (9) and (13). If n = 1 and the operator
Z, has the form of 4), then solving system (17) under conditions (36), for Ap(x, t) we
obtain expressions analogous to (19).

The explicit expressions derived in Secs. I and Il make it possible for us to develop
simple stable algorithms for the approximate solution of the multidimensional inverse prob-
lems examined above [7].

Example. Let ﬁl = [0, 1], 52 = [0, 2]. We have to determine the coefficients x,(x,
t) > 0, x,(x, t) > 0 from conditions

aT,

Cule, T gl (1, VT — (= Wals™ D (T— T =0, k=1, 2, (37)
Tultmo= Qop (x)sin 2y, Tilemo = f1n (B)sin 20y, Tylyes = for (¢)sin 2ny, (38)
£, T T, \ )
Ty =Toloe =0, (1 T2 0 TY = g5, 0,
o7 Y Y Hy=0 (39)
2l —qeo,
61/ ly=2
where
Colr, = d2(x+ i+ 1) Colx, )= (4nP— 1,5)(x + £+ D+ 2
alx, )=x+1 @u(x)=rkexp{—x}; fu(®)=Fkexp{—1}
Fan By =hexp{—1—1} k=1, 2, g4(x, ) =mexp{—x—1}x
% (6x 4+ 6t -+ 10); gy (x, t)=dmexp {—x— 1t} (x+ ¢+ 2).
The exact solution of this problem is A,(x, t) = x + t + 1, Aolx, ty =x 4+t + 2,
Tr(x, y, t) = kexp{—x — t}sin2ny, k = 1, 2. It follows from (6) and (7) that
M(x, 1) =100, ) —qu (x, DII2To, (x, O, (o)

9"2 (xv t) =y (x’ t)[2ﬂT02 (x, t)_]-—l’ '

where T x(x, t) satisfies the conditions of the system which are obtained from (37)-(39)

by tramsformation of (9). In this case w(y) = sin2%y. Solving this problem by the grid
method [8], we determine T,p(x, t), k = 1, 2. Subsequently, using (40), we find the values
of the coefficients A;(x, t), A, (x, t). '

Fer purposes of comparison, Table 1 shows the exact and approxinate values of the coeffi-
cient A, (x, t) for t = 0.6 at the nodes {x: x = x3, x4 = ih, h = /9, i = 0, 1, ..., 9} of
the grid. In row I we have the exact values, while rows II-IV give the approximate values
of \,(x, t) for various errors § im the initial data.
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NOTATION

t, time; tgyp, observation time interval; D,, D,, bounded regions in n-dimensional and
m-dimensional Euclidean spaces E,, Ep; I';, T,, boundaries; x = (X5, X5, «++, Xp)s ¥ = (¥
Yoy sees ym), arbitrary points in the regions D,, D,; D,;i, k = 1, N are bounded regions in

N
the n-dimensional Euclidean space; D;= UDj+ Yk, the discontinuity lines of the first kind
k=1
for region D;; the signs +0 and -0 indicate the corresponding limits to the right and to
the left of the inside normal; Ty, temperature distribution; Cy, volumetric heat capacity;
Ag» coefficient of thermal conductivity; by, coefficient characterizing the mobility of the
medium; @, heat-exchange factor; Qi, the strength of the inner sources; oy, fg, tempera-
ture distributions at the beginning of the process and at the boundaries of the region; v,
external conormal of the boundary; ¥y, temperature distribution at a given point; gy, tem-
perature gradient; qy, density of the heat flow; q,, density of the total flow; n, {, Gy,
CNs fixed points;

D = D;%Ds, Q= DX(O,tob] » Q5 = Dix(0, tob] , Q5= DX (0, tob] ’ on = DX D§ XO; tob] »Qsn = Dip X (©, tob] "Ax,, - o2

%3,
Py 3 _ 3 n m
A-’«’h 5_5;—%«, Vy, = P > Vi = a_l/;y Ay = z}.Axk, AVEFZ] Ayk, A= Ax+Ay, V-’CE(Vxl‘ ees Axn), V?':-—:(Vyl, s v!/m)'
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