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Explicit solutions have been found for inverse problems of determining the sys- 
tem coefficients of parabolic equations, where the unknown coefficfents are 
functions of time and space variables. The results of numerical calculations 
are given. 

As we study inverse problems related t o  the determination of the thermophysical charac- 
teristics which are system coefficients of parabolic equations, of marked significance is 
the ascertaining of such special regimes in which these problems allow of explicit solutions 
[i, 2]. Similar problems are encountered in determining physical characteristics for pro- 
cesses of heat exchange in porous, nonuniform, and other media of complex structure [3, 4]. 
Here we analyze several such regimes and write out the explicit solutions of the inverse 
problems. 

I. Let us examine the process described by the system 

C~ (x, t) OT---A-~ - -  ~ [Xh (x, t), Tk l - -  bh (X, t) ~ aTh. _ 
a t  i~=1 Ox~ 

(1)  
,n 0,7. ~ .  

b,~ (x, t) ~ ~"Ov~ ~ + ~ a,o.(x, t) 'l:~(x, y, t) = q~ (x, y, t), 
".= ]=1 

k =  1, N, (x, g, t ) ~ f ~  

with the foil, owing initial and boundary cond~itions: 

T,~ (x, v; t)lt=o = m,, (x, V), (2:) 

( 3 )  

where  C k > 0, hk > 0, bk,  bk~ Qk, a k j ,  q).k, fk, '  k ,  j = 1,  N a r e  c o n t i n u o u s  f u n c t ' i o n s ,  5 i s  a 
fixed point on the boundary D 2 x FI, the operator ~ [ilk(X, t):,. T k] has one of the following 
expressionsv i) Xk(X, T)ATk; 2)Xk(X, t)AxT k § ~yTk; 3~)AxTk + Xk~X, t)AyTk; 4)?x[ik(x, 
t)Vxr k] + ik(x, t)AyTk; 5) Vx[kk(X, t)VxT k] § AyT k, 

We are interested in the solution of the inverse problem of determiningcoeffieients 
(i). For this purpose we will connect to system (1)-(3) one or more of the followSngi condi" 
tions:~ 

Tk (x, g, t)lv=,, = ~P~ (x, t), ~liE D2, 

�9 a,~ = ~  g~ (x, t), nED.., 

X,~ (x, t) aTk J = - -  = q ~ ( x ,  O, ~16D,., k 1, N., 
aV Iv---n 

N t) OT~ I' X ) ~ ( x ,  t) ~h (x ,  " " " ' = qo(x,  t), ~ 6 D~, 
k=~ O~ /u=n 

(4) 

(5) 

(6) 

(7) 
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where ~k(X, t), gk(x, t), qk(x, t), Ok(X, t), k = i, N, q0(x, t) are given continuous func- 
tions satisfying the required conditions of conformity. 

Problem (1)-(3) with given coefficients and right-hand sides is the boundary-value prob- 
lem for the system of parabolic equations (i). Let us assume that this problem has a single 
classical solution [5]. We will take w(y) to denote the normalized eigenfunction of the 
operator by, corresponding to the eigenvalue # > 0, i.e., 

- -  Auw (~ = ~w (~ ,  w (~]F, = 0, g E D~. ( 8 ) 

Let us examine the heat regime in which the following assumptions (hereafter referred 
to as assumption A) are realized: Qn(x, 9,1)=Qo~(X,i)~(~, ~(x,~:=~0~(x)~(y), [~(~, 9, t)=~f,n(~, l)" 
m(y), where Qo~(X, l), ~o~(x), [o~(~, t) are given functions. Equations (I) are multiplied by 
w(y), and then we integrate the derived expressions over the region D 2. If we denote 

Ton (x ,  t) = ] T~ (x, g, t) w (g) dg, k == 1, N, 
D.~ 

( 9 )  

then we will obtain 

where ,~o[~k(X, T), Tok] 
A~To~--~7'o~; 3) AxTo~--~%~(x, t)To~; 

Af te r  replacement  of (9) ,  

Ch (x, l) OTo.__~ __ ~o  [~  (x, t), Tokl -- bh (x, t) v~Toh + 
Ot 

N ( 1 o )  
anj (x, t) Toh (x, t) = Qon (x, t), k = I,  'N, (x, t) E ~ ,  

]=I  

is one of the following expressions: 1) X~(X, t)[AxTon--~Ton];. 2)~,~(x, t), 
4) V~ [~,~ (x, t) V:~7'o~l - -  I~,n (x, t) Ton; 5) V:~ [ ~  (x, t) V J o i J  - -  ,t~Ton. 

conditions ( 2 ) - ( 7 )  assume the form 

To,, (x, t)tt=, = q~o~ (x), x E b~, (ll) 

7'o,, (x, t)lr, == fort(5 O, (~, l)C 1",, (12) 

To,, (x, ~) w 01) = '4:n (x, t), ~1 E D,,, (13) 

~I'0,~ (x: l) 0w (~1) -" :: gn (x, 0, 'q E/5~, a---$ -~ (14) 

OtO 
(15) 

N a ~  
~,~ (x, l) '~h (x, t) Ton (x, t) ~ (q) = qo (x, t), ~1E D.~. m.a 

h = l  

( i 6 )  

Thus, under assumption A system (1)-(7) is equivalently transformed to system (10)-(16). 
Therefore, in the following we will basically consider system (10)-(16). 

Let Ck(X, t) > 0, bk(x, t), bk(x, t), akj(X, t), k, j = i, N be continuous functions 
given on ~I and from conditions (1)-(4) we have to determine the continuous and positive 
functions %k(X, t), k = i, N. If we take (13) into consideration in (i0), we will obtain 

- - ,~fo  [Lh(x, t), q~kl == ~ ,  (x, t), (x, t )6~1,  k = 1, N, (17) 

where 

N O ~  
tl)h (x, 0 = oh (x, l) Vd~h - -  7==~ ~ akj (x, 0 q~h - -  Ch (x, t) ~ + <?oh (x, t) w (~). 

In the case of forms 1)-3) of the operator Sr , t), T0k], the function Xk(X, t) from 
(17) is determined elementarily. However, if the operator ~0[Xk(X, t), T0k] has the form 

233 



of 4)and 5), then for the determination of Xk(X, t) we derive a system of first-order dif- 
ferential equations from which lk(X, t) can be found with additional assumptions. For ex- 
ample, in the case of form 4) of the operator ~0 with n = i, D I = [0, l], let us assume 
that the functions 8~0k(X, t)/Sx vanish only at the point x 0 Q [O, i]. Then from (17) we ob- 
tain 

~,~ (xo, t):= tD~(x o, ')[l.~,[~ (Xo, l ) -  O~(x~ t)]-1 _ _  . . . . .  k= l ,N .  
dx  z ' ( 1 8 )  

Let us now solve system (17) under conditions (18). We know that this solution has the form 
[6] 

X0 ~e XO 
(19) 

where 

OZ, h (z, t) 
P~ (z) = Oz z 

l/,,h(z, t)] [ d~k(Z,oz t) - ]  x 

[ ] Rk(z) r  0 O,h(z,  t) - t ,  zv~xo,  le= 1, N. 
Oz 

The right-hand sides of expressions (18) and (19) are assumed to be positive, continuous, 
and finite. 

If the coefficients %k(X, t), k = i, N are given and we are seeking the coefficients 
Ck(x, t) > 0, bk(X, t) oraks t), k = i, N, then they can also be found from conditions 
(1)-(4) with the method described above. Here s is one of the numbers i, 2, .... N. For 
example, if %k(X, t) > 0, bk(X, t), akj(X, t), k, j = i, N are given functions, then for 
Ck(x, t) the following expressions are valid: 

C,~ (x, t) --- {Qo2 (x, t) w (n) + ,,Yo [Xk (x, t), *,~l + bk (x, t) V~,~ (x, t) - -  

N 

Ot ' 

The right-hand sides of these expressions are assumed to be positive, continuous, and finite. 
If in the above-examined problems, in the place of (4) we adopt condition (5), then in the 
above-derived explicit formulas for the unknown coefficients w(B), ~k(X, t) should be re- 
placed by (Bw/Sv)(n) and gk(x, t), respectively. 

Now let us consider the problem of determining the functions %k(X, t), k = i, N from 
system (1)-(3), (6). It is assumed that the other coefficients of the equation are given. 
After substitution of (9) system (1)-(3), (6) is transformed to system (I0)-(12), (15). From 
(15) and (i0) we have 

C~(x, t)m---- OTo~ 
Ot 

N 

~_~ a~j(x, t)To~ = Qok(x, t), te = 1, N, (x, t) Eft1. 
./=1 

(20) 

Consequently, T0k(X, t) is a solution of the mixed problem for the system of quasilinear 
parabolic equations (20) with conditions (ii) and (12). Let us assume that qk(x, t) > 0, 
~.0k(X) > 0, f0k(~, t) > 0, Bw/39(q) >0). These assumptions can be realized in practical 
terms, and a portion of these conditions is associated with the "conformity" of the initial 
data. Then the function T0k(X, t) > 0, and from (20), (ii), and (12)they can be found exact- 
ly or approximately. Substituting the found expressions for the functions T0k(X, t) into 
(15), we will obtain 
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~.~ (x, t ) =  q~ (x, t)[To~ (x, t) O@ (B)]-~ k 1, N. 
(21) 

If the additional conditions are specified in the form of (7), then the method described 
above for the unknown coefficients yields expressions analogous to (19) and (21). 

Let us present one special case of an inverse problem such as we considered above, which 
is encountered in studying the processes of cooling a body by a flow of liquid or gas, as 
the flow changes speed or temperature. Suppose we have to find a function a(t) continuous 
on [0, tob] from the system- 

0Ti AxT~q-(--1)la(t)(T~--T1)=0, (x, t)E~1, i =  1, 2, (22) 
Ot 

with  t he  i n i t i a l  and boundary c o n d i t i o n s  

Tilt=0 = ~(x),  T~lr, = O, i = 1, 2, xED1, (23) 

and the  fo l lowing  a d d i t i o n a l  c o n d i t i o n :  

OT~ (~, t )=g( t ) ,  0 ~ t ~ t o b ,  (24) 
0v  

where ~ i (x )  and g ( t )  a re  g iven  f u n c t i o n s .  

Let  Dt be a r e g i o n  such t h a t  t he  Green ' s  f u n c t i o n  G~(x, t ;  g, O) of t he  f i r s t  boundaryr  
va lue  problem f o r  t he  equa t i on  Yt - AY = 0 can be found in e x p l i c i t  form. For example,  D 1 
may be a h a l f  space ,  a sphe re ,  a segment,  e t c .  In system ( 2 2 ) - ( 2 4 ) ,  having c a r r i e d  out  the  
substitution 

t 

0 

i = 1 ,  2, 

after uncomplicated transformations for the unknown coefficient we obtain the expression 

/ / i l d ; OG~ 
a.(t) =_-~. dt !n. D, 

If in problem (22)-(24) in the place of conditions Ti[FI = 0 we specify the conditions 
(STi/SV)IF l = 0, then in the place of (24), setting the condltion 

T2(~I, t ) = , ( t ) ,  0 G t ~ t o b  , 

for the unknown coefficient a(t) we will find the expression 

1 d a (t) .... In 
2 dt 

D2 

j~ G eq, t; ~, o) 1r (~) + ,~, (~)1 d ~ - -  2 ,  (t) 
D= 

where G2(x , t; ~, O) is the Green's function of the second boundary-value problem for the 
equation Yt - AY = 0. 

II. Let us now examine the process described by the following system: 

s 

Cn (x, 0 -~F~  --  ~ [Xn (x, t), Th] - -  bh (x, t) ~ OTk "6~ (x, t) • 
Ol i=i O& (25) 

m 

x ~ OT~__:... z.~ Oy~ +a~(x '  t) Th(x, y, t)=Q~(.~, g, t), (x, g, t) 6.~ok, le=  1, lq, 
i = l  
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1"~, L~, ! 1 ,  l)lt:o ..- % (x, y), (x, ,j) ~ D~, x Do., k = i,---N, 
(26)  

.,,r~,l~4~: r: .. o, k = 1, N, 7'~1~o --= ):~(~o, ~, t), 

, t c)Tn v~--0 7'h(x, ,.i, t)l,~.~,-.-~',,~x, v, 0[~+o, ?,~(x, ) ~  --- 

(27)  
o ' r , , + ,  { , = 2,  - N : y ,  0 .  ~.h+x (x, t) - '0 -~- -  %,-,o 

Problem ( 2 5 ) - ( 2 7 )  w i t h  g i v e n  c o e f f i c i e n t s  and r i g h t - h a n d  s i d e s  i s  t he  b o u n d a r y - v a l u e  p rob lem 
f o r  the  s y s t e m  o f  p a r a b o l i c  e q u a t i o n s .  The f u n c t i o n s  Tk(X, y,  t )  a r e  a c l a s s i c a l  s o l u t i o n  
o f  t h i s  p rob lem.  When c o n d i t i o n s  A a r e  met ,  a f t e r  s u b s t i t u t i o n  of  ( 9 ) ,  s y s t e m  ( 2 5 ) - ( 2 7 )  
assumes t h e  form 

CI, ix, t) ,)1"oh 2t0 [>.,': ix, t), To:;l - -  b~ (x, t) ~-~ OTo~ 
- -  ' ~.~ O x----~ + t)[ =~ ( 28 ) 

ah(x, t) To;~(x, [) -:-Qol,(x, t), (x, t)~.Qth, le= 1, N, 

To~(x, t)lt-o .... q.'oJ,(x), x~fgll,, /e-: 1, N, (29)  

Fot[v, -- f,,, (G,,, t), Top,(x, t)l..h_o =- To~.~,.x (x, t)lv~-~ o, 

.:n,,, I . _ _ _  I t.j, ix, t) O~ I~1c--o = t . ~  (x, t) dTo,+1 
dv [ v~,~- o ' (30)  

*-- . 
7"0.vlv,~ .... fox ('(.x, t), h == 2, ~'~'- . . . .  f 

Let  Ck(x,  t )  > 0, bk(X, t ) ,  a k ( x ,  t ) ,  k = 1, N be c o n t i n u o u s  f u n c t i o n s  g i v e n  on t he  
r e g i o n s  S21k and from c o n d i t i o n s  ( 2 5 ) - ( 2 7 ) ,  (5)  we have  t o  d e t e r m i n e  t he  c o n t i n u o u s  and p o s i -  
t i v e  f u n c t i o n s  ~k(X, t ) ,  k = 1, N. C o n s i d e r i n g  (14)  in  ( 2 8 ) ,  we o b t a i n  

--k~0[Zk(x, t), gh(x, t ) l = O k ( x ,  t), k =  fl ~r (31)  

where 

t7 

Ov (11)- Ck (x, t) Og~ ix, t) + b~ (x, 0 ~ aj~(x, t) g~. 
. . . .  Ot Ox, i=l 

When the operator &f0[ik(X, t), Tok] has the form of i)-3), the functions lk(X, t) are de- 
termined in elementary fashion from (31). If the operator ~0[ik, T0k] has the form of 4) 
and 5), then for the determination of %k(X, t) we obtain a system of first-order partial 
differential equations from which the functions Xk(X, t) can be found under additional as- 
sumptions. Thus, for example, in the case of form 4) of the operator ~0[ik, T0k] when n = 
i, D01 = [0, i], without excluding generality, we assume that 3g1(x , t)/~x vanishes only 
at the point x 0E [0, i]. Then from (31) we obtain 

~l(X0, ' ) ~ l ( X 0 ,  ~)[~gl(X0, [) Ogl(Xo' t ) ]  -1. 
dx (32) 

Having solved Eq. (31) for the case in which k = i, we find that 

xh--1 Jck--1 Xh-I 

where 

P~ (z) = [ Ozghoz z(z' t) IbEh'(Z' t)l [ dgk(z' t) j - l ' O Z  
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Rh(z)=(Dk(z' t)[ Ogk(z' t ) ]  z~xh_~. 

From condition (30) we obtain 

kh+1 (;, t)I~=xk = ~ (x, t) agk (x, 0 
Ox 

Ogk+t(x, t) ]-~ 
OX x~ k " 

(34) 

where x k, k = i, N - i are certain numbers. Expressions (34) are used to find lk+l(x, t) 
from formula (33), etc., for k = 2, 3 ..... N. It is assumed that the right-hand sides of 
expressions (32)-(34) are positive, continuous, and finite. 

In addition to the additional condition (5) we can also specify one of the conditions 
(4) and (6). In all of these cases for %k(X, t) we obtain explicit expressions. If lk(X, t) 
are given, then in analogy with the method described above, we can solve the problem of de- 
termining other unknown coefficients. 

In conclusion, let us note several other types of boundary conditions which also make 
it possible for us to obtain explicit Solutions of inverse problems for Eqs. (i) and (25). 
With be(x, t) ~ bk(x, t) ~ 0, instead of conditions TkI~xr, = 0 and ThlN1~xr ' = 0 , in (3) 

and (27), respectively, we can specify the conditions 

OT~o~ 51xr~ = O, OTko~ ~h• O. (35) 

Then w(y) is a solution of the problem 

-- A~w (V) = ~w (V), r~ = O. 

Here the additional conditions (4) may be set for ~ 6D2, while conditions (5)-(7)on B 6D2 
must be given. 

In problem (1)-(3), instead of condition ThlE~• [~(~, y, t) we can have one of the fol- 
lowing conditions: 

~) ~aTh Ir~• = [h (L Y, O; b) ~.h~ (x, t) athos, r~• = fk (~, Y, t). 

Analogously, in problem (25)-(27), instead of conditions T11?0 == fl, TNIvN=fN we can set 
one of the following conditions: 

OT1 v, OTN [ "-= fN (~N, .~', t); ) ~ =f~(~o, y, t), ~ ~ 

d) ~,(X, t) OV |Vo =[1(~~ Y, t), '~N(X, t)~OTN N----rN(~N' y, t). 

In these cases we also obtain explicit expressions for the sought coefficients of Eqs. (i) 
or (25). The method of solving these problems and the form of the derived expressions for 
the sought coefficients differ little from the methods examined above. Therefore, we will 
not dwell in detail on all of these problems. We will present only one of them. Let it 
be required to determine the coefficients ~k(X, t) > 0, k = i, N from conditions (i), 
(2), (4), (35) and b). It is assumed in this case that bk(x, t) = bk(x, t) = 0, Ck(x, t) > 
0, akj(X, t) are given functions Following the same considerations as in the derivation 
of Eq. (17) for cases of forms 4i and 5) of the operator ~0[%k, T0k] , we find that %k(X, t) 
satisfy the system of partial differential equations (17). Let us connect the following 
conditions to system (17): 
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TABLE i. Comparisonof Exact and Approximate Values for the 
Coefficient l~(x, t) 

~= (x, 0 

Exact 

6 = 0,05 

~= 0 , t5  

I 
I I  

I I I  

IV 

! X 

o I o,'' I o._, i o . .  i i I '.~ 

1,6 11,661 1,741 1,831 lm~lU,O~S j~.,~4= 1=,~1~,4~51=,7~ 
i i I =.=301 =.. 001 

1,6  I 1.769 1 1,971 I ~,200 2:4501 2.714 1 2.9871 3.25513,46813.486 

, --1 w _ ~(x; t)~,2• =f0~(~, t)[~13~• (~), qEF$, (36) 

and these are obtained from b) with consideration of (9) and (13). If n = 1 and the operator 
~F0 has the form of 4), then solving system (17) under conditions (36), for lk(X, t) we 
obtain expressions analogous to (19). 

The explicit expressions derived in Sees. I and II make ~t possible for us to develop 
simple stable algorithms for the approximate solution of the multidimensional inverse prob- 
lems examined above [7]. 

Example, Let Dx = [0, i], D2 = [0, 2]. Wu have to determine the coefficients hi(x , 
t) > 0, 12(x, t) > 0 from conditions 

C~ (x, t)07'~ Ot VlZ~(x, t) vT~] - -  (-- l?a(x,"O(T;--T~)= 0, k= l ,  2; (37) 

T~lt=o = r (x)sin 2uy, Tk[~-o = [i~ (t) sin 2ny, T~lx=t ---- f ~  (0:sin 2~y , -  (38) 

T~]v=o = Tn]v~2 

~o OT~ [ =q~ (x, t), 
" Oy ..,=~ 

= qo(x, O, 
( 3 9 )  

where 

G (x, O= 4~(x + t + I); C~ (x, 0 = (4~-- 1,5)(x + t'+ 2)+ 2; 

a(x, t )=  x + t; %~(x)=kexp{--x}~; ~ln(t) ---- kexp {--t};  

&~('t)=l~exp{--1--t},~k---- I, 2; qo(x, t ) = n e x p { - - X - - t } •  

x(Sx+6t+10); %(x, O ~ = 4 n e x p { - - x - - t } ( x + t + 2 ) .  

The exact solution of this problem is ll(x, t) = x + t + i, 12(x , t> = x + t + 2, 
Tk(x, y, t) = kexp{-x - t} sin2ny, k = i, 2. It follows from (6) and (7) that 

~ (x, 0 = [qo (x, t) - -  q1 (x, 0t [2~To, (x, t) l-  t, ( 4 o )  

~ 2 ~ ,  O = ~ ( X ,  t )[2~To2(X, t ) ] - l ,  ' 

where T0k(X , t) satisfies the conditions of the system which are obtained from (37)-(39) 
by transformation of (9). In this case w(y) = sin2~y. Solving this problem by the grid 
method [8], we determine T0k(X, t), k = i, 2, Subsequently, using (40), we find the values 
of the coefficients ~1(x, t), 12(x, t). 

For purposes of comparison, Table 1 shows the exact an6 approxi'aate values of the coeffi- 
cient %~(x, t) for t = 0.6 at the nodes {x: x = xi, x i = ih, h = i/~, i = O, i ...... 9} of 
the grid. in row I we have the exact values, while rows II-IV give the approximate values 
of l~(x, t) for Various errors ~ in the initial data. 
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NOTATION 

t, time; tob, observation time interval; DI, D2, bounded regions in n-dimensional and 
m-dimensional Euclidean spaces En, Em; FI, F2, boundaries; x = (xl, x2, .... Xn), Y = (Yl, 
Y2 ..... ym), arbitrary points in the regions DI, D2; D1k, k = i, N are bounded regions in 

Ar 

the n-dimensional Euclidean space; Di= UD~I~ Yk, the discontinuity lines of the first kind 
k=1 

for region DI; the signs +0 and -0 indicate the corresponding limits to the right and to 
the left of the inside normal; Tk, temperature distribution; Ck, volumetric heat capacity; 
%k, coefficient of thermal conductivity; bk, coefficient characterizing the mobility of the 
medium; a k, heat-exchange factor; Qk, the strength of the inner sources; ~k, fk, tempera- 
ture distributions at the beginning of the process and at the boundaries of the region; ~, 
external conormal of the boundary; @k, temperature distribution at a given point; gk, tem- 
perature gradient; qk, density of the heat flow; q0, density of the total flow; n, ~, ~0, 
~N, fixed points; 

D~Di:XD~, ~DX(O,tob], Q1!~D~X(0, tob], Q~=D~(0,tob]~ ~o~ ~Df~O~01tob],Q~~D1~ (0, tob],Ax1,~ ~ , 
dx#X k 

Avh ~ -~ ' 0~  Vxl~ ~ Ox~ " vn~ ~ --'OY1~ Ax ~ h=l Axh' A,~ ~ h=l Auk. A ~ A~+Av, Vx~(Vx~ . . . . .  Ax,~, V~(Vv~ . . . . .  Vv) .  
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